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Abstract 
A mathematical model of a revolving beam at 

different speeds is examined. The approximation 

solution of the system behaviour in the resonance 

situation is studied through the application of the 

multiple time scales method to the nonlinear 

system of differential equations. We looked at the 

system when a proportional-derivative (PD) 

controller was used to apply delayed control to 

displacement and velocity. Using the Routh-

Huriwitz method, the consistency of the steady 

state solution in the near-resonance scenario is 

evaluated and examined. We identify and examine 

the factors affecting the steady state solution of the 

different parameters. The MATLAB software 

package is used to obtain simulation effects. To 

demonstrate and contrast controller effects at 

different system settings, different response curves 

are used. 
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Introduction 
  

Unwanted occurrences in dynamical and structural 

structures are always disruptions and complicated 

instability. For many reasons, including geometric 

nonlinearities, nonlinear powers of excitation, and 

the nonlinear characteristics of materials, these 

systems are subject to nonlinear vibrations. A lot of 

time, money, and effort goes into reducing the 

oscillations and vibrations in these systems to 

prolong their lifespan and guard against damage or 

failure. 

This issue, which has an impact on industry, 

frugality, and equipment, has drawn the attention 

and efforts of numerous academics and scientists. 

Thomas et al. [1] address the high amplitude 

nonlinear vibration activity of a revolving 

cantilever beam, with applications for turbo-

propeller blades and turbo equipment. We looked 

into how the rotation speed affected the beam's 

nonlinear vibrations, specifically how its 

resonances behaved in terms of hardness and 

softness and whether or not large amplitude jump 

phenomena occurred. Zhang et al. [2] looked into a 

new dynamic model of a rotating flexible beam 

based on the absolute nodal coordinate formulation 

with a condensed mass placed at any spot. They 

discovered that the normal frequencies and the 

mode shapes are affected by the condensed mass's 

magnitude and direction. Rezaei et al. [3] 

performed an aeroelastic analysis of a spinning 

wind turbine blade by taking into account the 

impact of geometrical nonlinearities related to 

significant blade deflection produced during wind 

turbine operation. They presented an aerodynamic 

model based on the strip theory by utilising the 

ideas of quasi-steady and unstable airfoil 

aerodynamics. The findings demonstrated 

geometric nonlinearity, 

 

 

had a notable effect, particularly for bigger 

structural deformations. In [4], the impact of 

rotation velocity on nonlinear resonances is 

examined, and in [5], the von Kármán model is 

solved through the application of the multi-scale 

perturbation approach. Using nonlinear beam 

models like axial inertia and nonlinear curvature, 

nonlinear resonances are simulated using a one-

mode Galerkin expansion. Additionally, nonlinear 

resonance curves are generated using a fully 

numerical method (harmonic balance combined 

with an asymptotic numerical technique), based on 

a Galerkin discretization with Legendre 

polynomials and a continuity process. Kim and 

Chung proposed a nonlinear model for a more 

thorough and efficient dynamic analysis of a 

rotating cantilever beam with elastic deformation 

specified by partial integro-differential equations 

with non-Cartesian deformation variables. They 

demonstrated how the suggested model not only 

offered good numerical efficiency and precision, 

but also successfully overcame the limitations 

caused by the Cartesian variables of an earlier 

conventional nonlinear model. Latalski [7] 

proposed the dynamics of a construction made up 

of a thin-walled composite beam with an embedded 

active portion and a rotating rigid hub. 

They examined the natural mode forms and the 

spatial distribution of the electrical field based on 
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the device rotation velocity and the laminae fibre 

orientation angle. Kandil, H. El-Gohary [8] 

investigated the effects of time delay on its output 

to reduce the oscillations of a spinning beam at 

various speeds using a proportional derivative (PD) 

controller. Despite the dual system's linearly 

coupled vibrational modes, only one of the modes 

receives controller input; the other coupled mode 

follows the active mode. They controlled the device 

in the worst resonance conditions, which were 

confirmed quantitatively. Yao et al. [9,10] deduced 

the governing equations for the beam by applying 

the theory and isotropic constitutive law of 

Hamilton. They investigated the dynamics of high 

temperature and supersonic gas flow at various 

speeds. With the use of macrofiber composite 

(MFC) actuators and polyvinylidene fluoride 

(PVDF) sensors, Choi et al. [11,12] demonstrated 

how to achieve an active damping effect using a 

negative velocity feedback control technique. MFC 

is a type of piezoelectric material that is composite. 

Adequate vibration suppression efficiency would 

consequently be achieved by the necessary 

configuration and distribution scale of the 

sensor/actuator combination. 

Joy Mondal and S. Chatterjee [13] suggested that a 

velocity feedback based nonlinear resonant 

controller would be effective in controlling a 

nonlinear beam's forced and free self-excited 

vibration. The velocity signal from the sensor is 

sent through a second-order filter, and the nonlinear 

function of the derivative of the filter vector is used 

to calculate the control force. For vibration 

investigations of rotating versatile beams with 

improved active constrained layer damping 

(EACLD) treatment that is partially shielded, Liang 

Li et al. [14] have created a new hierarchical 

model. By representing the edge element of the 

EACLD patch as an analogous spring with 

associated point mass, the mass effect of the two 

additional edge components is included. The 

discrete rigid-flexible coupled dynamic equations 

of hub-beam systems with EACLD treatment in the 

open-loop and closed-loop scenarios are obtained 

using the assumed mode approach and Lagrange's 

equations. 

According to Boumediène and Smaoui [15], the 

beam is supposed to be non-uniform and clamped 

at its left end to the disk's core, where torque 

control takes place. At the right end, however, is 

where a memory boundary control is located. First, 

the conventional torque control is proposed, and 

then the boundary control is designed based on the 

dynamic properties of the input and a unique kind 

of memory phenomena. A new operational modal 

analysis (OMA) method for a rotating structure was 

developed by L.F. Lyu and W.D. Zhu [16]. It was 

based on an image processing technique, a lifting 

way of data processing, and a rigorous rotating 

beam vibration theory. The rotating structure's real-

time location was ascertained through image 

processing, which allowed the TCSLDV system to 

track a time-varying scan direction on the rotating 

structure. They then developed a novel tracking 

continuously scanning laser Doppler vibrometer 

(TCSLDV) method to monitor and scan a rotating 

structure. 

In order to lessen oscillations and improve 

efficiency, the PID control with time delay control 

is used to the system of rotating beam at different 

speeds depicted in Fig. 1a [8,9,10] that is subjected 

to external and parametric force. As illustrated in 

Fig. 1b, MFC sensors are positioned across the 

blade's bottom surface to monitor displacements of 

the blade cross section. As seen in Fig. 1c, the 

measured signals will be returned to the computer 

for analysis and computation of the proper control 

signal. A control loop feedback mechanism shown 

in Fig. 2 continuously calculates an error value e(t) 

as the difference between a desired setpoint (SP) 

and a measured process variable (PV), and once the 

control signal has been calculated, it is passed 

through a conditioning circuit and applied to the 

embedded MFC actuators that are distributed over 

the top of the blade to modify the blade position 

and reduce its vibration. 

 

 

makes adjustments using derivative, integral, and 

proportional terms (abbreviated P, I, and D, 

respectively).Using the multiple time scales 

perturbation technique (MSPT), the response 

equation was displayed and an approximate 

solution was obtained. The phase plane and the 

frequency response equation are both used to 

examine the system's stability in the primary and 

principal parametric resonance cases. The nonlinear 

dynamic system's reaction and the impact of 

various factors are examined by numerical means.
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• (b) 

 

(c) 

 
Fig. 1. Rotating compressor blade model, (a) thin-walled pre-twisted blade, (b) sensors and actuators 

distribution and (c) block diagram of control process 

 

Fig. 2 A closed loop system controller 

 

• System Model and Mathematical Analysis 

 
The equations of motion for the rotating beam shown in Fig. 1 is introduced by Bekhoucha [5] and Yao et al. 

[9, 10] by applying the Hamilton’s principle as: 
t 

 ( K   U   W )d t 
, (1) 

0 
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where K denote the kinetic energy, U the strain energy, and W is the virtual work of external forces, t 

denotes time, and  is the variation operator. By calculating the variation in kinetic, strain energy, and the 

virtual work of non-conservative external forces (given in Appendix), and substituting Equation (1), then the 

governing equations of the nonlinear vibration system for the rotating beam are as the following: 

 

1 3 

u  2 u  R (z )u   R (z )u    T u  a (z )v   a (z )u 

 u u u  v v  u  
 1 

u 2  
 

1 
v 2  

 (R    z )  p  , 

 


 2 2 

 o x 

  

(2) 

 

1 2 

v  2 R (z )v   R (z )v    T v  a (z )u   a (z )v 

 v u u  v v  v  
 1 

u 2  
 

1 
v 2  

 p  , 


 2 2  

y 

 

 

where u, v are the translations along the x, and y axes, 

  

px , py 

  

are the external forces per unit axial length in 

 

the x and the y direction. The values of 

  

px , py and the variables a
i (z ),i  1, 2,3, are given in Appendix. 

 

The dots and primes, respectively, represent partial differentiation with respect to t and z, R(X,Y,Z) is the 

vector function of a point M(X,Y,Z) of the deformed thin wall beam, and given by 

R (X ,Y , Z )  X u i  Y v  j  Z k  R
o . Applying Galerkin’s approach [17] on system (2), 

the 

horizontal and vertical displacements u ,v have been approximated  to the modes X 1 , X 2 respectively 

to have the dimensionless two degree of freedom non-linear rotating beam system in the form: 

 

X    2 X    2X     X     

X     X X 2   X 3  2f f  X 

  

cos(t ) 
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1 1     1 1 13 2 11 2 5 1 2 5 1 o 14 1 

 

f 2 X cos2 (t )  f  sin(t )  k X (t  )  k X (t  ), 
  

(3a) 

 
14 1 16 1     1 2 1 

 
 

X  2 X  2X   X  

 X   X X 2   X 3  2f f  X 

  

cos(t ) 
 

2 2 2 2 22 1 21  1 5 2 1 5 2 o 24 2 

 

f 2

  

24X 2 

  

cos2 (t ), 
  

(3b) 

 
 

where all system parameters are defined before. 

Scaling the previous parameters as: 

11  
 ̂ ,     ̂ ,     ̂ ,     ̂ ,     ̂ ,     ̂ ,     ̂ ,   

  ̂ , 

 
11 13 13 14 14 16 16 21 21 22 22 24 24 5 5 

  

(4) 

 

k1   k
 ̂ , k   k̂  ,   ̂  ,   ̂  . 

 
1 2 2 1 1 2 2 

 

Applying multiple time scales method [18], an asymptotic expansion is sought as: 
1 o 1 10 o 1 11 o 1 

X (T ,T , )  X (T ,T )  X (T ,T ) O ( 2 ), 

2 o 1 20 o 1 21 o 1 

X (T ,T , )  X (T ,T )  X (T ,T ) O ( 2 ), 

1 o 1 10 o 1 11 o 1 

X (T  ,T    , )  X (T ,T )  X (T ,T ) O ( 2 ), 

where the time derivative will takes the values: 
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For obtaining the steady state solution for amplitude and phase, putting a1 

 
1 
 a2  

2 
 0 into Eq. (16), the resultant formulas can be solved numerically. To discuss the stability 

behavior of these solutions, linearizing these equations according to Lyapunov first (indirect) method [20] to 

give the following system: 
 

where the values of mn ,(m, n  1, 2,3, 4) are given in “Appendix”. Numerically, primary resonance is 

the worst resonance case that is taken into account in the discussions. 

• Results and Discussion 

 
This section provides illustrations of the amplitude and phase system behaviours at different resonance 

instances. A comparison of time delay and active control is shown, along with the impact of various system 

settings on the amplitude of the signal. 
 

• Time history 
 

Fig. 3(a, b) shows the time response for the amplitude X 1 , X 2 , where Fig. 3(c) illustrates the system phase 

plane, Without resonance case and without applying any control system (i.e. k
1  k 2  0 ) at the following 

parameter variables: 

  65,   100, 1  2  0.5, 11  0.003, 13  0.82, 14  0.55, 16  6.55, 

 

5  0.9, 22  0.82, 21   0.001, 24  0.5, f o  7, f 

  

 2,   0. 

 

 

 
 

Fig. 3(a). the time response for the amplitude X 
1 
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Fig. 3(b). The time response for the amplitude X 1 

 
 
Fig. 3 (c). System phase plane 

 
 

We can see that the steady state amplitudes are stable in the case of non-resonance operating mode. Fig. 4 

clarifies the time history without control and with primary resonance at the same previous parameters except 

that     99 , we observe that the amplitudes have been increased due to the resonance operating point. 

 

Fig. 4(a). The time response for the amplitude X 1 
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Fig. 4(b). The time response for the amplitude 
X 
2 

 
 

 

Fig. 4(c). System phase plane 

 

Now applying active and time delay control for the system with primary resonance and comparing the 

amplitudes. Fig. 5, 6 shows the effect of active and time delay control on both X 1, X 2 . We observe that the 

 

 

effective of active control is about 105%, and Time delay controller is about 125% so the time delay 

controller is more efficient than active velocity feed-back controller for this system. 
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Fig. 5 (a,b). Effect of active control on X 

1, X 
2 respectively at primary resonance case 
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Fig. 6 (a,b). Effect of time delay control on X 1, X 2 respectively at primary resonance case,   0.0015 

 

• Comparisons with numerical method 

We compared the numerical solution utilising the Rung-Kutta Method (RKM) and the approximate solution 

caused by (MTSM) in this subsection. In the cases of 0.0015 and 0.0005, respectively, Figures 7 and 8 

demonstrate a strong correlation between the numerical results (represented by red curves) and the 

approximate solution (blue curves). 

 

 
Fig. 7(a). Time history for the amplitude X 1 using MTSM (blue curve) and RKM (red curve) 
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Fig. 7(b). Time history for the amplitude X 
2 using RKM (blue curve) and MTSM (red curve) 

 

 
Fig. 8(a). Time history for the amplitude X 1 using MTSM (blue curve) and RKM (red curve) for 

  0.0015 

 

 
Fig. 8 (b). Time history for the amplitude X 

2 using MTSM (blue curve) and RKM (red curve) for 

  0.0015 

• Frequency response 
 

Now the following figures show the system amplitude against the detuning parameter 1 with change in 

specified values for system parameters. In Fig. 9 the parameters a
1 

,a
2 with 1 in case of primary 

resonance case with: 

 

   100, 1  0.9, 2  0.7, 11  0.003, 13  0.82, 14  0.55, 16  6.55, 
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5  0.9, 22  0.82, 21  0.001, 24  0.5, f o  7, f k1  1000, k 2  0.7, 1, 1.5. 

  

 3,   0.0015,  0.001 , 
 
 

We see that when the gain (k 2) increases, the 

amplitude falls, indicating that the delayed 

velocity feedback control outperforms the 

displacement delay. Figures 10 and 11 show how 

different values of the damping parameters, 1 and 

α2, as shown in these figures, respectively, affect 

the amplitude and the influence of Ά1. The system 

parameters are set to the same values as those 

shown in Fig. 9, with k 2 = 1. Figure 10 shows that 

the values of a1 and a2 are inversely proportional 

to the damping parameter 1, whereas Figure 11 

shows that a1 is 

 

roughly constant with two peaks. This is because it 

affects the system's second mode's velocity, X 2. 

 
 

• Amplitude vs. certain system 

parameters 

 
Unless otherwise noted, let's take into consideration 

the criteria listed in sub-section 3.3. This subsection 

displays the amplitude range change as the constant 

and variable rotating forces, f o, f, are varied, as 

indicated in Fig. 12(a,b), for k 2 = 100, k 2 = 15, 

and k^ = 90, respectively. Up to maximum 

amplitude at saturation, the main system's steady 

state amplitude is a monotonically increasing 

function of the excitation amplitude. Because of its 

high value, the saturation value could cause an 

unstable or damaged system. The behaviour of the 

amplitude at ⁗ ‽ ⁷ ‽ 10 is depicted in Figure 13(a, b) 

with damping parameters 1 and 2, respectively. 

It is useful for the system to select a large value for 

1, but an expensive material should be used. 

Therefore, we use suitable materials with 

appropriate cost and add a specified controller for 

reducing the amplitude for minimum values in the 

case of resonance cases. As we can see in Fig. 13, 

the suitable range for 2 ₣ 0.003 and 1 

₳ 0.2.  
 

Fig. 9(a). System amplitude a1 against detuning parameter 1   at k 2  0.7,1,1.5 
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Fig. 9(b). System amplitude a2 against detuning parameter 1 at k 2  0.7 ,1,1.5 

 

 
 

 

 

Fig. 10(a). System amplitude a1 against detuning parameter 1 at 1  0.4, 0.5, 0.7 

 
 

Fig. 10(b). System amplitude a2 against detuning parameter 1 at 1  0.4, 0.5, 0.7 
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Fig. 11 (a) System amplitude a1 against detuning parameter 1 at 2  0.4, 0.5, 0.6, 0.9 

 
 
Fig. 11 (b). System amplitude a2 against detuning parameter 1 at 2  0.4, 0.5, 0.6, 0.9 
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Fig. 12(a). System amplitude against constant rotating forces fo 

 
 
Fig. 12(b). System amplitude against variable rotating forces f 

 
 

Fig. 13(a). System amplitude against damping parameters 1 

 

















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Conclusion 

  

Fig. 13(b). System amplitude against damping parameters 2 
 

 

This study uses the various time scales approach 

to analyse a system of nonlinear ordinary 

differential equations that describe a revolving 

beam approximately. We investigated how the 

presence or absence of a time delay affected the 

displacement feedback system amplitude and 

velocity. Primary and major parametric 

resonance, the worst cases of resonance, are 

studied. We came to the conclusion that the time 

delay controller is more effective than the active 

feed-back controller on the velocity for this 

system. Since the time delay controller's 

effectiveness is approximately 125% while 

active control's is approximately 105%, using 

the time delay controller is advised in this 

system. To do the stability analysis, the Routh–

Hurwiz criteria and the Lyapunov first 

technique are used. Furthermore, utilising the 

Rung-Kutta of fourth order method, the 

approximate solution generated by (MSPT) is 

compared with the numerical approximation 

solution. A good agreement between 

approximate and numerical approaches was 

provided by the distinction. In order to select the 

right values for these parameters and achieve 

system stability, the impacts of the system 

parameters on the amplitude are examined. 
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